
1

Unit 6:
Data Structures (II)

Matrices

n A two dimmension matrix can be seen as a
group of vectors with the same lengths and the
same type of elements.

A(1,:) = [1 2 3; 4 5 6; 7 8 9];

or
A(1,:) = [1 2 3];

A(2,:) = [4 5 6];

A(3,:) = [7 8 9];

.
2

1
4
7

2
5
8

3
6
9

A

Matrices

n These are not valid matrices, as they have rows
with different lengths or different types of
elements

.
3

1
2
3

4
5 8

A
1
2
A

4
c
6

7
8
9.2

B

Two dimension matrices

1. Creation
varMatrix = []; varMatrix = 1;
varMatrix = [1 2; 3 4]; varMatrix = zeros (2,5);
varMatrix = [varVector1; varVector2; varVector3];
…

2. Use
n Read an element: varMatrix(row, column);
n Read a portion: varMatrix(row_ini:row:end, col_ini:col_end);
n Save/modify an element:varMatrix(row, column) = value;

varMatrix(position) = value;
n Delete a column: varMatrix(:,column) = [];
n Delete a row: varMatrix(row,:) = [];

.
4

Two dimension matrices

n Useful functions:
q size - Returns the dimensions of a matrix

A = [1 2 3; 4 5 6];

size(A)

>> 2 3

q length - Length of vector or largest matrix dimension
q numel - Number of elements in the matrix
q isempty - Determine whether the matrix is empty

.
5

Two dimension matrices

n Useful functions:
q sarr = char(s1, s2, s3,..)
forms a matrix of characters containing the string s1, s2,

s3… as rows. Automatically pads each string with
blanks in order to form a valid matrix.

sarr = char(‘cat‘, ’lizard’, ‘bear’);

.
6

c
l
b

a
i
e

t
z
a

a
r

r d

blank
spaces

Cells Arrays

n A cell array is a vector or matrix of cells , where
each cell can contain data which belongs to
any valid MATLAB type, and can have any
valid array dimensions.

n To create a cell array use the symbols { }
varCell = { ‘a’ 3 ‘chain’ 0.567 [1 2]}

varCell

.
7

{ ‘a’ } { 3 } { ‘chain’ } { 0.567 } { [1 2] }

8

Cells Arrays

1. Creation
Before creation you must clear the variable using clear varCell

varCell = {A B C}; where A, B, C are variables of any type
varCell = { 1 ‘a’ ‘chain’ ‘0.4’ [1 2 3]};
varCell = {‘Hello’ ‘Goodbye’ ‘See you later’};
…

9

Cells Arrays
2. Use

n Read the content of a cell: varCell{position};
newVar = varCell{1} -> newVar is now ‘a’

n Save/modify an element: varCell{position} = value
varCell {1} = ‘See you later’;

n Delete a cell: varCell(position) = [];

n Cell Arrays of more than one dimension:
varCell{row, column} = value;

Be careful!!!

{‘a’} {3} {‘chain’} {0.567} {[1 2]}

varCell

Exercise
n Write a program that asks the user to introduce words until he/she

introduces the word end. Then the program prints all the words
introduced

Example:
Introduce a word: cat
Introduce a word: mouse
Introduce a word: lizard
Introduce a word: end
You have introduced the following words:
cat
mouse
lizard

.
10

Exercise

clear words;
cont = 0;
sword = input('Introduce a word: ', 's');
while (strcmp(vword, 'end') ~=1)

cont = cont +1;
words{cont} = sword;
sword = input('Introduce a word: ', 's');

end;
disp('You have introduced the following words: ');
for i=1:cont

fprintf('\n %s',words{i});
end;

.
11

{‘cat’} {‘mouse’} {‘lizard’}

words

Exercise
n Write a program that asks the user to introduce names and ages

until he or she introduces an empty name. Next it prints them all
following the order of introduction. Use a cell array to store the
information

Example:
Introduce a name: Pedro
Introduce an age: 20
Introduce a name: Ana
Introduce an age: 18
Introduce a name: Elena
Introduce a name: 19
Introduce a name:
You’ve finished introducing names.
Names introduced:
Pedro: 20 years old
Ana: 18 years old
Elena: 19 years old

.
12

{‘Pedro’}
{20}
{‘Ana’}
{18}
{‘Elena’}
{19}

cellstudents

Exercise
clear cellstudents;
cont = 0;
varName = input('Introduce a name: ', 's');
while (isempty(varName) == 0)

varAge = input('Introduce an age: ');
cont = cont + 1;
cellstudents{cont} = varName;
cont = cont + 1;
cellstudents{cont} = varAge;
varName = input('Introduce a name: ', 's');

end;
disp('You finished introducing names');
disp('Names introduced');
for i=1:2:cont

j = i +1;
fprintf('\n %s: %d years old ', cellstudents{i}, cellstudents{j});

end;

.
13

{‘Pedro’}
{20}
{‘Ana’}
{18}
{‘Elena’}
{19}

cellstudents

Exercise
n Write a program which asks the user to introduce names and ages

until he or she introduces an empty name. Next it prints them all
following the order of introduction. Use a cell array of two
dimensions (a matrix) to store the information

Example:
Introduce a name: Pedro
Introduce an age: 20
Introduce a name: Ana
Introduce an age: 18
Introduce a name: Elena
Introduce a name: 19
Introduce a name:
You’ve finished introducing names.
Names introduced:
Pedro: 20 years old
Ana: 18 years old
Elena: 19 years old

.
14

{‘Pedro’} {20}
{‘Ana’} {18}
{‘Elena’} {19}

cellstudents

Exercise

clear cellstudents;
cont = 0;
varName = input('Introduce a name: ', 's');
while (isempty(varName) ==0)

varAge = input('Introduce an age: ');
cont = cont + 1;
cellstudents{cont,1} = varName;
cellstudents{cont,2} = varAge;
varName = input('Introduce a name: ', 's');

end;
disp('You finished introducing names');
disp('Names introduced');
for i=1:cont

fprintf('\n %s: %d years old ', cellstudents{i,1}, cellstudents{i,2});
end;

.
15

{‘Pedro’} {20}
{‘Ana’} {18}
{‘Elena’} {19}

cellstudents

cellstudents{cont,1}

cellstudents{cont,2}

Structures

n Sometimes we need to handle many different types of information
together:
q Example: the information about a student might include his or her name,

surename, NIA, age, address..

n So far we have seen two ways of working around these situations:
1. Using different variables, vectors or matrices for each type of data

varStName = ‘Ana’
varStNIA = 10003456
varStCourse = ‘Programming’

2. Using cellArrays
cellStudent = {‘Ana’, 10003456, ‘Programming’}

.
16

Structures

n Structures give us a way to "combine" multiple types of information
under a single variable.
q We could do this using cells, or variables, vectors or matrices for each

type of data…
q … but structures allow us to use Human Readable descriptions for our

data

n Structures are multidimensional MATLAB arrays with elements
accessed by textual field designators.
q You can think about them as variables that are composed of other variables. We

call those subvariables “fields”:

variableName.fieldName

.
17

Structures

nExample: Create a structure to store information about a student
student.name = ‘Pedro';

student.nia = 10004567;

student.course = ‘Programming’;
>> student

name: ‘Pedro’

nia: 10004567

course: ‘Programming’

.
18

“student” is a variable of type
structure that is composed of
three fields: “name”, “nia”
and “course”

Structures

.
19

2. Creation
n Field by Field

variableName.fieldName = value;

Example:
student.name = ‘Pedro';

student.nia = 10004567;

student.course = ‘Programming’;

n Using the command struct
variableName = struct(

fieldName1,fieldvalue1,
fieldName2, fieldvalue2,…);

Example:
student = struct (‘name’, ‘Pedro’, ‘nia’, 10004567,
‘grade’,‘biomedical’);

Structures

2. Use
n Access an element: varName.field_name;
n Display all the content: varName (only use this one in the command line not in a program)

n Save/modify an element: varName.field_name = value;
n Delete a field: varName = rmfield(varName,’field_name’);

.
20

Exercise
n Write a program which asks the user to introduce the name, age,

and the job of an employee, and then prints all the information. Use
a structure to store the information

Example:
Introduce the name: Pedro
Introduce the age : 24
Introduce the job: Engineer
Worker’s information: Pedro, 24 years old, Engineer

.
21

Exercise

worker.name = input (’Introduce the name: ','s');

worker.age = input (‘Introduce the age: ‘);

worker.job = input (‘Introduce the job);

fprintf(’\n Worker information: %s, %d years old,%s.', worker.name, worker.age,
worker.nickname);

.
22

Vectors/Matrices of Structures

n You can create vectors or matrices of structures in
the same way as you create vectors or matrices of
numbers, characters or any other type of data.

.
23

name = ‘Pedro’
nia = 10004567
course = ‘Biomedical’

name = ‘Alberto’
nia = 10004666
course = ‘Computer Science’

name = ‘Juan’
nia = 10004688
course = ‘Maths’

vstudents

You can image the information
of a vector of a vector of
structure as organize like this
in memory

Vectors/Matrices of Structures

n To create the vector simply introduce the values of
each field of the structure stored in each position of
the vector.
vectorname(position).fieldname = value;

q Example:
student(1).name = ‘Pedro';

student(1).nia = 10004567;

student(1).course = ‘Biomedical’;

student(2).name = ‘Alberto';

student(2).nia = 10004666;

student(2).course = ‘Computer Science’;

.
24

name = ‘Pedro’
nia = 10004567
course = ‘Biomedical’

name = ‘Alberto’
nia = 10004666
course = ‘Computer’

vstudents

Vectors/Matrices of Structures

n To access the structure stored in a position of a
vector

vectorname(position)

n To access a field of a structure stored in a position of
a vector

vectorname(position).fieldname
q Example:

>> student(1)
name: ‘Pedro’

nia: 10004567

course: ‘Biomedical’

>> student(1).course

Biomedical

.
25

Exercise
n Write a program which asks the user to introduce the names, ages

and jobs of different employee and then prints all the information.

Example:
Introduce the name: Pedro
Introduce the age : 24
Introduce the job: Engineer
Do you want to introduce information about another emploee (Y/N)? Y

Introduce the name: Ana
Introduce the age : 27
Introduce the job: Doctor

Do you want to introduce information about another emploee (Y/N)? Y
Introduce the name: Juan
Introduce the age : 32
Introduce the job: Programmer
Do you want to introduce information about another emploee (Y/N)? N
Worker 1: Pedro, 24 years old, Engineer
Worker 2: Ana, 27 years old, Doctor
Worker 3: Juan, 32 years old, Programmer

.
26

Exercise

vworkers = [];
cont = 0;
cContinue = 'Y';
while (cContinue == 'Y')

cont = cont + 1;
vworkers(cont).name = input ('Introduce the name: ','s');
vworkers(cont).age = input ('Introduce the age: ');
vworkers(cont).job = input ('Introduce the job: ','s');
cContinue = input('Do you want to introduce information about another emploee (Y/N)?','s');

end;
for i=1:cont

fprintf('\n Worker %d: %s, %d years old, %s.', i, vworkers(i).name, vworkers(i).age, vworkers(i).job);
end;

.
27

Exercise
n Modify the previous program so at the end it asks the user to

introduce a number at prints the information of the corresponding
worker following the order of introduction.

Example (continuation):
. . .

Introduce the name: Juan
Introduce the age : 32
Introduce the job: Programmer
Do you want to introduce information about another emploee (Y/N)? N
Introduce a number: 2

Worker 2: Ana, 27 years old, Doctor

.
28

Exercise

vworkers = [];
cont = 0;
cContinue = 'Y';
while (cContinue == 'Y')

cont = cont + 1;
vworkers(cont).name = input ('Introduce the name: ','s');
vworkers(cont).age = input ('Introduce the age: ');
vworkers(cont).job = input ('Introduce the job: ','s');
cContinue = input('Do you want to introduce information about another emploee (Y/N)?','s');

end;
number = input(‘Introduce a number: ‘);
fprintf('\n Worker %d: %s, %d years old, %s.', number, vworkers(i).name, vworkers(i).age,
vworkers(i).job);

.
29

Exercise

n Write a program which asks the user to
introduce coordinates x and y of points. Next
the program prints the information of all the
points introduced one after the other.

.
30

Exercise
Example of execution:
Introduce the x coordinates; 1.5
Introduce the y coordinates; 2.5
Do you want to introduce more points (Y/N)? Y
Introduce the x coordinates; 3
Introduce the y coordinates; 5.12
Do you want to introduce more points (Y/N)? Y
Introduce the x coordinates; 2
Introduce the y coordinates; 2
Do you want to introduce more points (Y/N)? N
The coordenates of the points are:
Point 1: (1.50, 2.50)
Point 1: (3.00, 5.12)
Point 3: (2.00, 2.00)

.
31

Exercise

% Introduction of the points

count = 0;
more = 'Y';
while more == 'Y'

count = count + 1;
point(count).x = input('Introduce the x coordinates: ');
point(count).y = input('Introduce the y coordinates: ');
more = input('Do you want to introduce more points (Y/N)? ','s');

end;
disp (‘The coordinates of the points are: ‘);

for i = 1:count
fprintf(‘\n Point %d: (%.2f, %.2f)’, i, point(i).x, point(i).y);

end;

.
32

Exercise

n Modify the previous program so that after
introducing the points the user is asked to
introduce a number. The program will print on
screen the distances from the point selected
by the user (according to their order of
introduction) to the rest of the points. Finally,
it displays which is the furthest point to the
one selected by the user.

.
33

Exercise

Example of execution:
Introduce the x coordinates; 1.5
Introduce the y coordinates; 2.5
Do you want to introduce more points (Y/N)? Y
Introduce the x coordinates; 3
Introduce the y coordinates; 5.12
Do you want to introduce more points (Y/N)? Y
Introduce the x coordinates; 2
Introduce the y coordinates; 2
Do you want to introduce more points (Y/N)? N
Introduce the number of one of the points: 2
The distances to the point (3.00,5.12) are:
Point 1: distance 2.12
Point 3: distance 1.41
The closest point is the point (2.00,2.00)

.
34

